(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(a, x), a) → f(f(f(a, a), f(x, a)), a)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), a) → f(f(f(a, a), f(z0, a)), a)
Tuples:
F(f(a, z0), a) → c(F(f(f(a, a), f(z0, a)), a), F(f(a, a), f(z0, a)), F(a, a), F(z0, a))
S tuples:
F(f(a, z0), a) → c(F(f(f(a, a), f(z0, a)), a), F(f(a, a), f(z0, a)), F(a, a), F(z0, a))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
f(
a,
z0),
a) →
c(
F(
f(
f(
a,
a),
f(
z0,
a)),
a),
F(
f(
a,
a),
f(
z0,
a)),
F(
a,
a),
F(
z0,
a)) by
F(f(a, f(a, z0)), a) → c(F(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a), F(f(a, a), f(f(a, z0), a)), F(a, a), F(f(a, z0), a))
F(f(a, x0), a) → c
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), a) → f(f(f(a, a), f(z0, a)), a)
Tuples:
F(f(a, f(a, z0)), a) → c(F(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a), F(f(a, a), f(f(a, z0), a)), F(a, a), F(f(a, z0), a))
F(f(a, x0), a) → c
S tuples:
F(f(a, f(a, z0)), a) → c(F(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a), F(f(a, a), f(f(a, z0), a)), F(a, a), F(f(a, z0), a))
F(f(a, x0), a) → c
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(f(a, x0), a) → c
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), a) → f(f(f(a, a), f(z0, a)), a)
Tuples:
F(f(a, f(a, z0)), a) → c(F(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a), F(f(a, a), f(f(a, z0), a)), F(a, a), F(f(a, z0), a))
S tuples:
F(f(a, f(a, z0)), a) → c(F(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a), F(f(a, a), f(f(a, z0), a)), F(a, a), F(f(a, z0), a))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
f(
a,
f(
a,
z0)),
a) →
c(
F(
f(
f(
a,
a),
f(
f(
f(
a,
a),
f(
z0,
a)),
a)),
a),
F(
f(
a,
a),
f(
f(
a,
z0),
a)),
F(
a,
a),
F(
f(
a,
z0),
a)) by
F(f(a, f(a, f(a, z0))), a) → c(F(f(f(a, a), f(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a)), a), F(f(a, a), f(f(a, f(a, z0)), a)), F(a, a), F(f(a, f(a, z0)), a))
F(f(a, f(a, x0)), a) → c(F(f(a, a), f(f(a, x0), a)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), a) → f(f(f(a, a), f(z0, a)), a)
Tuples:
F(f(a, f(a, f(a, z0))), a) → c(F(f(f(a, a), f(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a)), a), F(f(a, a), f(f(a, f(a, z0)), a)), F(a, a), F(f(a, f(a, z0)), a))
F(f(a, f(a, x0)), a) → c(F(f(a, a), f(f(a, x0), a)))
S tuples:
F(f(a, f(a, f(a, z0))), a) → c(F(f(f(a, a), f(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a)), a), F(f(a, a), f(f(a, f(a, z0)), a)), F(a, a), F(f(a, f(a, z0)), a))
F(f(a, f(a, x0)), a) → c(F(f(a, a), f(f(a, x0), a)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c
(9) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(f(a, f(a, x0)), a) → c(F(f(a, a), f(f(a, x0), a)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), a) → f(f(f(a, a), f(z0, a)), a)
Tuples:
F(f(a, f(a, f(a, z0))), a) → c(F(f(f(a, a), f(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a)), a), F(f(a, a), f(f(a, f(a, z0)), a)), F(a, a), F(f(a, f(a, z0)), a))
S tuples:
F(f(a, f(a, f(a, z0))), a) → c(F(f(f(a, a), f(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a)), a), F(f(a, a), f(f(a, f(a, z0)), a)), F(a, a), F(f(a, f(a, z0)), a))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(f(a, f(a, f(a, z0))), a) → c(F(f(f(a, a), f(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a)), a), F(f(a, a), f(f(a, f(a, z0)), a)), F(a, a), F(f(a, f(a, z0)), a))
We considered the (Usable) Rules:
f(f(a, z0), a) → f(f(f(a, a), f(z0, a)), a)
And the Tuples:
F(f(a, f(a, f(a, z0))), a) → c(F(f(f(a, a), f(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a)), a), F(f(a, a), f(f(a, f(a, z0)), a)), F(a, a), F(f(a, f(a, z0)), a))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [2]x1
POL(a) = 0
POL(c(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(f(x1, x2)) = [2] + [4]x2
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(a, z0), a) → f(f(f(a, a), f(z0, a)), a)
Tuples:
F(f(a, f(a, f(a, z0))), a) → c(F(f(f(a, a), f(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a)), a), F(f(a, a), f(f(a, f(a, z0)), a)), F(a, a), F(f(a, f(a, z0)), a))
S tuples:none
K tuples:
F(f(a, f(a, f(a, z0))), a) → c(F(f(f(a, a), f(f(f(a, a), f(f(f(a, a), f(z0, a)), a)), a)), a), F(f(a, a), f(f(a, f(a, z0)), a)), F(a, a), F(f(a, f(a, z0)), a))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(13) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(14) BOUNDS(O(1), O(1))